EAST: An Exponential Adaptive Skipping Training Algorithm for Multilayer Feedforward Neural Networks

نویسنده

  • R. MANJULA DEVI
چکیده

Multilayer Feedforward Neural Network (MFNN) has been administered widely for solving a wide range of supervised pattern recognition tasks. The major problem in the MFNN training phase is its long training time especially when it is trained on very huge training datasets. In this accordance, an enhanced training algorithm called Exponential Adaptive Skipping Training (EAST) Algorithm is proposed in this research paper which intensifies on reducing the training time of the MFNN through stochastic manifestation of training datasets. The stochastic manifestation is accomplished by partitioning the training dataset into two completely separate classes, classified and misclassified class, based on the comparison result of the calculated error measure with the threshold value. Only the input samples in the misclassified class are exhibited to the MFNN for training in the next epoch, whereas the correctly classified class is skipped exponentially which dynamically reducing the number of training input samples exhibited at every single epoch. Thus decreasing the size of the training dataset exponentially can reduce the total training time, thereby speeding up the training process. This EAST algorithm can be integrated with any supervised training algorithms and also it is very simple to implement. The evaluation of the proposed EAST algorithm is demonstrated effectively using the benchmark datasets Iris, Waveform, Heart Disease and Breast Cancer for different learning rate. Simulation study proved that EAST training algorithm results in faster training than LAST and standard BPN algorithm. Key-Words: Adaptive Skipping, Neural Network, Training Algorithm, Training Speed, MFNN, Learning Rate

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cystoscopy Image Classication Using Deep Convolutional Neural Networks

In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...

متن کامل

A parallel genetic/neural network learning algorithm for MIMD shared memory machines

A new algorithm is presented for training of multilayer feedforward neural networks by integrating a genetic algorithm with an adaptive conjugate gradient neural network learning algorithm. The parallel hybrid learning algorithm has been implemented in C on an MIMD shared memory machine (Cray Y-MP8/864 supercomputer). It has been applied to two different domains, engineering design and image re...

متن کامل

Cystoscopic Image Classification Based on Combining MLP and GA

In the past three decades, the use of smart methods in medical diagnostic systems has attracted the attention of many researchers. However, no smart activity has been provided in the field of medical image processing for diagnosis of bladder cancer through cystoscopy images despite the high prevalence in the world. In this paper, a multilayer neural network was applied to clas...

متن کامل

A Modular Neural Network Architecture with Additional Generalization Abilities for High Dimensional Input Vectors

iii Abstract In this project a new modular neural network is proposed The basic building blocks of the architecture are small multilayer feedforward networks trained using the Backpropagation algorithm The structure of the modular system is similar to architectures known from logical neural networks The new network is not fully connected and therefore the number of weight connections is much le...

متن کامل

Multi-View Face Detection in Open Environments using Gabor Features and Neural Networks

Multi-view face detection in open environments is a challenging task, due to the wide variations in illumination, face appearances and occlusion. In this paper, a robust method for multi-view face detection in open environments, using a combination of Gabor features and neural networks, is presented. Firstly, the effect of changing the Gabor filter parameters (orientation, frequency, standard d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014